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An approximate analytical solution of the nonlinear problem of heating of a 
spherical body by radiation and convection is obtained. 

The problem of calculating the unsteady temperature field in spherical particles heated 
by radiation and convection arises in the investigation and adjustment of compartment and 
rotary furnaces, and certain other heating devices [i]. A similar problem also occurs in 
mass-transfer theory when the period of initial heating of particles of finite size is being 
estimated [2]. 

The actual problem in the case of spherical symmetry reduces to solution of the Fourier 
equation 

O2T 2 a T  1 a T  

Or ~ + r Or a & (1) 

with the following boundary conditions: 

r=O ~, O T  r = n  a T  = O; = [a ( T  v - -  T )  - k  c~ (T~ a - -  T4~I Pr=~, 
Or ~ r  , (2) 

T jT=0 = To. 

We will assume henceforth that the values of Tp and T s are independent of time, and To 
is independent of the coordinate. Introducing the dimensionless numbers and simplices 

Fo = at: B i -  a R  I -  c~T,f lR 
R 2'  ~ '  Z 

r T T O T p  
(~ = --~ , 0 = - -  0 o - -  O p - -  , 

T s '  T s ' T~ 

(3) 

we write the initial equations in dimensionless form, 

020 2 aO O0 
aq~ § q~ Oqo 8Fo 
a o l  (4) 

aq~a~ t~=o=O; --~-~ t~=1= [ B i ( O p - - O ) + J ( 1 - - O 4 ) ] ~ = ~ '  

0 IFo=0 = 0o. 

To g e n e r a l i z e  t h e  p r o b l e m  t o  some e x t e n t ,  we w i l l  p r o c e e d  f rom a more g e n e r a l  n o n l i n e a r  
boundary condition on the surface of the sphere, 

O0 ~=1 (5) 
Oq~ = q (0) I~=,, 
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where q( ) is an analytical function of its argument and, hence, can be put in the form of a 

power series. 

Using the Laplace operator method and the first and third boundary conditions of (4), 
we obtain the following expression for the image e(~, p) of the temperature: 

@(oF, p)=(@(l, p)--0,,1 shl/-~W , % 

The aim of the following investigation was to obtain approximate solutions of the con- 
sidered nonlinear problem, valid either at low, or high Fo. 

Solutions of Problem for Small Fo 

We differentiat~expression (6) with respect to ~ and then put ~ = i-. Then in view of 
boundary condition (5), we can write 

Q = [@ (1, p) p - -  0 o] ( cth ]/-p 1 ) ,  
\ 1F, ~ P i (7) 

where q(p) is the image of q(0) i~=t. Converting now to the original, we obtain 

F6 

q!Oo+u) " 1 V~ J ~ (Vo--~)dn--u. (8) 
0 

Here u=0!~=1--0 o is the excess temperature on the sphere surface, and ~(Fo) is a theta func- 
tion [3], which for small Fo can be written in the form 

O =  1_ 1 5 - 2  exp - -  (9) 
1 Fo Fo ]J" 

k = l  

Relation (8) is an exact integrodifferential equation for determination of the excess 
temperature u(Fo). Its effective approximate solution, however, can be obtained only for 
small Fo. For this purpose we neglect the terms in (9) which decrease exponentially when 
Fo + 0. We can then replace (8) by the equation 

1 

1 f q ( O o ~ u ) = u =  V~-~. [Fo(u)--Fo(u$)]-l/2d~ (10) 

o 
for the unknown Fo(u). The new vari~le of integration ~ is 

u(n) ~=-- (ii) 
u (Fo)' 

The integral equation (i0) allows the following approximate solution, which is suitable 
for small u: 

0.786 
Fo (u) - 

qo"- 
t/2 1.24(q 1-',- 1) ua __[  1.05 q--" - -  3.46 (ql + 1) ]u~__ 

qo a I_ qo 3 qo .4 ] 

0.93 q* - -2 .85  (q~'-- t)q2 i 7.04 (ql~-- 1)3 ] u s ' u 6 
qo a qo ~ qo 5 . . . .  

(12) 

where the numbers qo, ql, qa, ... are the coefficients of the expansion of function q(0) in 
a Taylor series near the point e = Co, i.e., 

1 diq I i 0, 1, 2, (13) 
i! dO t Io=o0' 

The correctness of solution (12) can be verified by direct substitution in Eq. (i0). 
For purely convective heat transfer (J = 0), we obtain instead of (12) 

F o ( u ) - -  0"786-u2 1 ,24(1- -Bi )  u3 ' 3 . 4 6  (1--Bi)2 u~--7 .04 (1--Bi)3 u ~ u  ~ ( 0 p ~ l ) .  (14) 
Bi  2 B i  3 -r- B P  Bi  b "'" 

A direct comparison of solution (14) with the known results of the exact solution for 
small Fo [4] shows its high accuracy. 
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To evaluate the region of applicability of solution (12) we determine the order of the 
discrepancy & after its substitution in the exact equation (8). If for simplicity we keep 
only the first, maximum term in series (9), we obtain as a result 

! 

A =  2 [ 

0 

I 

2 ? 
lFo (u) -- Fo (ug)l-U2 exp { -- [Fo (u) -- Fo (u~)] -l} d~ < 1 Z  exp I -- Fo (u) -1 ] ~ [Fo (u) -- Fo (u~)l-'/2d~, (15) 

Hence, taking Eq. (I0) into account, we easily obtain from the condition A << 1 the fol- 
lowing sufficient inequality for applicability of solution (12): 

1 
Fo << (16) 

In 2 (q + u)" 

The t e m p e r a t u r e  f i e l d  0( , Fo) f o r  s m a l l  Fo(p + ~) can  c o n v e n i e n t l y  be d e t e r m i n e d  f rom 
the  f o l l o w i n g  a p p r o x i m a t e  a n a l o g  of  (6 ) :  

0 = ~ 1  [ 0 ( 1 ,  p ) - - ~ - ] { e x p [ - - V - p ( 1 - - q o ) ] - - e x p [ - - V p ( 1  @qo)]}@ 0---~ ~ (17) 
q~ p 

Conversion from this relation to the original gives 

1 

q~ , 2 ] /FO (u) " ~ ' o  (U~) - -  erf d~. -- 2 l/F~u(u) -- Fo(u~) (18 ) 
0 

The temperature at the center of the sphere (~ = 0) is obtained from (18) after evalua- 
tion of an indeterminate form of the 0/0 type and taking into account that here Fo << i, 

1 

0r = 0 o @ - -~  [Fo(u) -- Fo(u~)]-i/2exp - -  -$  , 

0 

It is characteristic that this value has an error of the order of that obtained in calcu- 
lation of u [see (15)]. Finally, to calculate the average temperature 8(Fo) over the volume 

we can use the exact balance relation 

dO = 3q (u). (20) 

dFo 

Solution of Problem for Large Fo 

We put the heat flux on the sphere surface in the form 

q = q(1)v @ q,,  (21) 

where qO) q(~),..., is the dimensionless deviation of the varying temperature on the sphere 
surface from its steady value, determined from the condition: q(e,) = 0, 

q, = q (2)v2 @ q (~)va @ v~, .-- , (22) 

and t h e  numbers  q ( 1 )  q ( 2 ) ,  . . . ,  d e t e r m i n e d  f rom the  f o r m u l a  

q(i) =i(!--  1)(0 i!l dO idiq o=o, (i = 1, 2 , . . .  ,) (23) 

are the coefficients of the expansion of q in a power series near the point 0 = O,. We now 
express the Laplace image of the flux in accordance with (21) and (7) and from the obtained 
relation we determine the image V for v. If the obtained expression is substituted in (6), 
we finally obtain the following formula: 

o = 0o + sh V ~  

p V ~  

0 . - - 0  o q(1) , .  Q, 
p (24) 

chVp T=, (q(1)__l) shV-p ' 

1464 



where Q~ is the image of q,. Converting directly from (24) to the original, we arrive at the 
following exact expression for the temperature field: 

Fo 

0 = O. - -  v o (Fo, ,.p) + .t' q* [v (n)l q) (Fo - -  rl, ,.p) dq. 
0 

(25) 

Here 

and the numbers YI, Ya, 
equation 

Vo : qO) (0, - -  0o) E A~(~) exp ( - -  yn2Fo), 

n=t (26) 

r (Fo, ~) = X A~ (~) exp ( - -  ~ Fo), 

A~ (~) = 2y_~, sin? ~ �9 s i n ~  
y~ - - s iny . . co s?~  ' 

... are successively increasing positive roots of the transcendental 

l__q(~) (27) 

It is easy to verify that in the absence of radiation (J = 0, q, = 0, q(1) = Bi, 0p = i) 
solution (25) is the same as the known solution [4]. In the considered nonlinear problem the 
use of (25) leads to the following nonlinear integral equation for the unknown v(Fo): 

~o 

v = v o (Fo) - -  .i' [q(~')vZ (q) @ q(~)v~ (~1) @ v~, �9 �9 - ,] ~ (Fo :-- q) dt  I. 
0 

(28) 

Equation (28) is obtained directly by putting ~ = i in (25). The sense of the coeffi- 
cients contained in it is obvious~ we note that when n * =, Yn § ~/2 + nv and An(l) § 2. 
Hence, function ~(Fo) has a @-type form and when Fo + 0 behaves like i/F#~o. Accordingly, at 
the upper limit Fo = n the quadrature (28) has a singularity similar to that present at small 
Fo. 

Equation (28) is very suitable fo~ determination of the temperature at the surface of 
the body at large Fo. In fact, if Fo + =, v § 0. Hence, the quadrature in this equation has 
a higher order of smallness and in the zero approximation we naturally put v = vo. Higher 
approximations vl, v2, ..., to v can be sought with the aid of the usual iterations 

Fo 

v,+ 1 = Vo-- . I  q* [vs(rl)l qS (F~  drl (s -= O, 1 . . . . .  ). (29) 
0 

In a similar way we determine successive approximations to the temperature at any point 
of the sphere in accordance with (25) from the formulas 

Fo 

08 -- O, -- v o (Fo, q)) + .f q* [vs(~l)lr qqdrl. (30) 
0 

In particular, the first approximation 01, according to (30), is 

O~ = O, - -  v o (Fo, qo) + qm' (0, - -  0o) Z A~ (1) A~ (1) A,, (q$ 

i , ] ,n=l  

M{q(~) e x p [ - - ? 2 V ~  } 
+ 

X 
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+q(1)q(a)(O,--Oo)~.7 Az(1) = ~ exp [ - -  ?n2 F~ - -  exp [ - -  (Y~ -~ Y~ ~- Y~)F~ ?~ + ~ + y~__ ~;n2 (31)  

We note that expression (31) for determination of the first approximation e1(~, Fo) con- 
tains terms with small denominators, i.e., those for which the quantities yi 2 + yj= 7 2, 
Yi 2 + yj2 + = 2 Yl -- Yn , -'' are as small as desired or even, at particular values of ~(~, 
equal to zero. An investigation of the indeterminate form of the 0/0 type arising in this 
case shows that these terms behave approximately, or exactly, like Fo exp (-~Yn=Fo). However, 
since the number n for such terms with secular members is at least two, we can state that 
for sufficiently large Fo the difference between the initial and first approximations is in- 
significant. 

Since the value of y~ is always much less than y~, y~ .... , for sufficiently large Fo 
we can replace (31) by the following regular formula: 

01 = 0, - -  F (q~) exp (- -  V~ Fo). 

Here we have introduced the symbol 

(32)  

J'l 
F (~o) ---- q,1) (0, - -  0 o) /~-  - -  q(1) (0, - -  

Z A t (1)Aj(1) 
0~ y2 2 

~, i=1 i Y/ 

=o 

• ~ ~ + (33) 

It is easy to verify that in the linear problem (in the absence of radiation) the quad- 
rature in expression (25) disappears, and the expression for the first approximation (32) 
represents the course of heat transfer in the regular regime of the first kind [4]. It should 
be noted that in the general nonlinear case (heating by radiation and convection) the change 
in temperature in the first approximation (32) has also a constant logarithmic derivation and 
a similar cross-sectional distribution, but with a large gradient, which depends on the non- 
linear terms. 

The approximate methods developed in this paper for the obtention of solutions for low 
and high Fo can easily be extended to the cases of a plate and cylinder. 

NOTATION 

T, temperature, ~ To, initial temperature of body; Tp, temperature of flux; Ts, emit- 
ter temperature; r, variable radius; R, radius of sphere; ~, time; a, thermal diffusivity; 
%, thermal conductivity; ~, convective heat-transfer coefficient; Cs, reduced radiation co- 
efficient. 

i. 

o 

3. 
4. 
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